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Abstract
Self-shadowing bumpmaps add realism and depth to scenes and provide important visual cues.

Previous techniques have shown self-shadowing at interactive rates, but at a substantial cost over
standard normal mapped bump mapping. This paper uses volume textures on consumer graphics
hardware, using few enough resources that they can be easily added to existing normal map bump
mapping renderers. Also explored are the ways the technique can be scaled according to available
memory constraints.

1. Introduction
Bumpmaps are common on today’s consumer hardware, and widely accepted and used in

applications to add surface detail without additional geometry. However, without self-shadowing they
lack many of the visual cues important for immersion.

Horizon mapping1 is a particular implementation of self-shadowing on bump-mapped surfaces. The
angle from each point on the surface to the point’s local horizon is encoded into a separate texture for
each texel of the bumpmap. Sloan2 presents a method of rendering horizon maps on consumer
hardware where multiple horizon maps are stored and interpolated using multiple rendering passes.

These papers together provide a firm theoretical base for horizon mapping over curved surfaces.
However, their implementations require considerable effort and rendering time over existing normal
mapped rendering. Self-shadowing is currently not considered a required feature in rendering pipelines,
and it needs to have a low impact on the rendering effort and speed to be used widely.

Kautz3 introduces an alternative idea of using an ellipsoidal cone at each texel to approximate the set
of unshadowed light directions. This also requires a large number of texel reads and/or rendering
passes, and a lot of computation at each pixel.

2. Horizon Maps
Given a distant light illuminating a surface from a certain compass bearing, a horizon map stores the

elevation from each point on the surface to the point’s apparent horizon. If the elevation of the light is
greater than this angle, the point is drawn lit, otherwise it is drawn shadowed. To generalise to a light
coming from any bearing, multiple horizon maps are generated, each storing the horizon map for a
light at a particular bearing. When rendering, the relevant maps are blended together to produce an
interpolated horizon elevation for the given bearing, which is then compared with the light’s elevation.

For curved surfaces, the techniques used in normal map bump mapping4 transform the light into
surface-local co-ordinates at each vertex. The surface-local bearing is then interpolated and at each
pixel the relevant horizon maps are read and compared with the interpolated surface-local elevation.

The curvature of the geometry will affect how much and how far each bump casts shadows, and it is
usually easiest to take this into consideration when generating the horizon maps. This problem is
common to all self-shadowing bumpmap algorithms. In practice, if this effect is visible then the bumps
concerned are usually large enough to be converted to actual geometry.

There is a discontinuity in the bearing/elevation parameterisation where the light passes directly
overhead. However, near this discontinuity, very little if any of the surface will be in shadow, and the
errors in interpolation will at least preserve this where they do go wrong. As long as the surface is
tessellated to a sufficient degree, the errors in interpolation are not noticeable.  This minimum degree
of tessellation is a requirement for most other techniques used in illumination such as normal mapping,
so this is not a harsh restriction.

3. Hardware Implementation
At each pixel, the closest few horizon maps must be blended together to provide an interpolated

horizon elevation value. Sloan[2] uses multiple passes, one for each horizon map, and a set of basis
textures to achieve this blending on conventional hardware. However, this requires a lot of fill rate and
multiple rendering calls. Multi-texture hardware can be used to improve the speed of Sloan’s method
and reduce the number of passes, but all the texels of all the bearings are still being read, which is



costly. The different numbers of textures supported by different hardware also makes the code difficult
to write and maintain.

Three-dimensional volume textures are now common on consumer hardware. The 2D horizon maps,
one for each light bearing, are placed in a stack to form a 3D texture volume, and the bearing of the
light at each pixel is used as the third texture co-ordinate.

The addressing of this co-ordinate is set to a special wrap mode, so that the bearing value can wrap
around from 0 to 1 correctly. This mode is supported by many vendors under Direct3D. At the triangle
rasterisation set-up stage after any vertex shaders are applied, the texture co-ordinates of each vertex
are truncated to the 0-1 range. Then a value of 1 may be added or subtracted to two of the vertices, so
that they lie within 0.5 of the third vertex. The triangle is then rasterised using the standard wrap
texture addressing mode. Thus a triangle with texture co-ordinates of 0.1, 0.2 and 0.9 will have the
third vertex’s texture co-ordinate wrapped to –0.1, so that rasterisation would take the shortest route if
the texture were mapped to a cylinder5

Using this wrap mode, the addressing and filtering logic of the texture unit performs the selection
and blending between horizon maps. This reduces the technique to a single pass, however many
horizon maps are used, and at each pixel only the necessary two maps are sampled, reducing memory
bandwidth substantially.

The blending available is not as controllable as Sloan’s basis textures, but in practice the difference
in quality for the same number of horizon maps is small. The extra efficiency of this method allows
more horizon maps to be used for similar frame rates, improving the quality above Sloan’s method.
The disadvantage is an increase in storage space required for the extra horizon maps.

4. Shader Integration
Existing pipelines already transform the light vector into surface-local space at each vertex, then

linearly interpolate this light vector across each polygon. The extra steps required to add self-
shadowing are simple to add, and require no large changes.

4.1 Vertex Shader
The additional step required at each vertex is to calculate bearing and elevation from the surface-

local light vector. This can be costly since it involves inverse trigonometry. Some pipelines have fast
approximate equivalents, but even this is not actually necessary. The elevation value is only
interpolated and then used in a boolean comparison, so it can be remapped within reason to any
monotonic function. The tangent of the elevation angle is simple to calculate and works well. Although
the tangent grows large at high elevations, as mentioned previously very little if any of the surface will
be shadowed at these large values, so the values can be clamped quite early without noticeable errors.
A maximum slope can be calculated for any given bumpmap heightfield, giving the maximum tangent
that will need to be stored, and allowing a global scale to be applied to fit this into the limited texture-
channel resolution. This allows fine detail for shallow or smooth surfaces, and coarse detail but high
dynamic range for rougher surfaces.

An alternative to storing the tangent of elevation in the horizon map is storing the sine of elevation,
which is the same as the dot(light,normal) value already calculated for use by normal-mapping.
Although this should work equally well in theory, with the advantage of a fixed range (unlike the
tangent), in practice the linear interpolation between horizon maps works visibly better when using the
tangent. However, if speed is paramount, it is a good alternative.

Similarly, the bearing simply selects and interpolates between the nearest two horizon maps. The
actual bearing function used must be continuous and have a range of 0 to 1. However, beyond that the
errors inherent in sampling horizon values at a relatively small number of directions (typically 8 or 16
in a full circle) are larger than any errors from using a non-linear function for interpolation. I have used
the following code with good results:

float angle;
if (vec.x >= vec.y) {

if (vec.x >= -vec.y) {
// +ve X quadrant. Map from 0.75 (y=-0.707) to 1.0 (y=+0.707)
angle = vec.y * (0.25 / 1.414) + 0.75 + (0.707 * (0.25 / 1.414));

} else {
// -ve Y quadrant. Map from 0.5 (x=-0.707) to 0.75 (x=+0.707)
angle = vec.x * (0.25 / 1.414) + 0.5 + (0.707 * (0.25 / 1.414));

}
} else {

if (vec.x >= -vec.y) {



// +ve Y quadrant. Map from 0 (x=+0.707) to 0.25 (x=-0.707)
angle = vec.x * (-0.25 / 1.414) + 0.0 + (-0.707 * (-0.25 / 1.414));

} else {
// -ve X quadrant. Map from 0.25 (y=+0.707) to 0.5 (y=-0.707)
angle = vec.y * (-0.25 / 1.414) + 0.25 + (-0.707 * (-0.25 / 1.414));

}
}

Using DirectX8.1 Vertex Shaders, this code can be reduced to seven instructions. A typical Vertex
Shader for a curved-surface normal map renderer will use around thirty or forty instructions, so this is a
very reasonable additional cost.

4.2 Pixel Shaders
The additional operations required for the pixel pipeline are equally simple. A standard normal map

bump map pipeline will find the dot-product of the surface-local light vector with the normal map and
add this lighting to the scene. Here, the horizon map volume texture for the surface is bound to a spare
texture stage. The surface-local light bearing calculated at each vertex is used as the third texture co-
ordinate to select and blend between the horizon map “slices” of this texture. The elevation read is
compared with the light elevation calculated at each vertex. If the light’s elevation is greater, the
normal-mapped light’s contribution is added to the pixel’s lighting.

Using the DX8.1 pixel shader pipeline, this requires no more than two extra instructions (and
sometimes fewer) of the eight available. An example of a typical normal map bump map with self-
shadowing is as follows:

;v0.rgb = bumpmapped light direction
;v1.rgb = bumpmapped light colour
;v0.a = bumpmapped light elevation
ps.1.1 ;pixel shader version number
tex t0 ;diffuse map
tex t1 ;normal map
tex t2 ;volume texture horizon map
texcoord t3 ;non-bumpmapped vertex lighting
dp3_sat r1.rgb, t0_bx2, v0_bx2 ;perform normal-map lighting
mad r1.rgb, r1, v1, t3 ;add normal map light to vertex lighting
+sub r0.a, v0, t2_bias ;r1.a = light_elev – (horizon_elev - 0.5)
cnd r0.rgb, r0.a, r1, t3 ;r1.a>0.5 ? combined light : just vertex lights

The last two instructions perform all the steps needed for self-shadowing. The “sub” instruction
operates only on the alpha channel, and so can be run in parallel with the previous “mad” instruction
(indicated by the “+” sign before it), and does not actually take up an extra instruction slot in this case.

5. Memory Use
While the shader additions are simple, even at 8 bits per texel the memory required to store the

horizon maps is considerable.
Most hardware requires that volume textures be a power of two in every dimension. Typically, 8

bearings will be stored. For visibly higher quality close-up, 16 bearings can be used, but going to 32
does not result in much better quality in most cases. Using only 4 bearings is enough for some textures,
especially general “roughness” maps without identifiable features. See figures 1 to 4.

[8 and 16 are the most important. If there is space, the 4-sample one would be good. If there is space
left, or to make up a whole page/panel of illustrations or something, including the 32-sample one would
be nice just to make the point that it’s very similar to the 16-sample one]

The number of bearings sampled is simple to scale at runtime and requires no rendering pipeline
changes except for the use of the correct volume texture. This allows good scalability of memory use
according to distance and detail level.

The resolution of the texture in the other two dimensions is also easily altered without other
rendering changes. Reducing the resolution of the horizon maps by a factor of two in each dimension
has very little visible effect on quality, and reducing by a factor of four in each dimension has a visible
but small effect on the smoothness of the shadow edge. The normal map performs most of the high-
frequency lighting effects, while the horizon map is used to darken more substantial portions of the
image. A reduction of eight times in each direction has a very visible impact on quality, and is unlikely
to be acceptable.



Comparing typical memory sizes for textures gives the following table:

Type Size Format Memory Required (kbytes)
Diffuse texture 512x512 32bpp ARGB 1024

512x512 DXT1 - 4bpp compressed 128
Normal map 512x512 32bpp ARGB 1024

512x512 8bpp indexed palette6 256
Horizon map 512x512x16 8bpp scalar 4096

256x256x16 8bpp scalar 1024
128x128x16 8bpp scalar 256
128x128x8 8bpp scalar 128

Since horizon map data is typically composed of smooth gradients with occasional sharp edges, it
compresses well using vector quantisation or schemes such as the existing DXTn/S3TC7 formats.
Although these formats do not currently support 8-bit scalar values, suitable variants of these schemes
are likely to give good results.

The largest impact on the rendering pipeline is the memory required for the multiple horizon maps.
Although represented using 8 bits per pixel, this can still be costly. Fortunately the method scales well
according to the available memory, both in the number of directions the horizon map is sampled, and in
the resolution of the horizon maps used. This allows the application to make easily controlled tradeoffs
between visual quality and memory consumed.

Figure 1 - 4 bearing samples



Figure 2 - 8 bearing samples

Figure 3 - 16 bearing samples



Figure 4 - 32 bearing samples
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