
Software Engineering and 
VR

The Devil in the Details

Tom Forsyth

Software Architect, Oculus

Jan 27th 2015



Tom Forsyth

• Graphics drivers @ 3Dlabs

• Game graphics @ Muckyfoot
• Urban Chaos
• Startopia
• Blade 2

• Animation middleware: Granny3D @ RAD Game Tools

• Instruction set design on Larrabee / Xeon Phi @ intel

• VR @ Valve
• VR support on Team Fortress 2 & Half Life 2

• Software Architect @ Oculus
• All things graphics
• Distortion & calibration, interacts with lens design
• Best practices, dev.rel. support, psychology



VR is awesome!



VR is awesome!



VR is awesome!



VR is awesome!



VR is awesome!



VR is awesome!



VR is awesome!

• VR is also incredibly tricky



VR is awesome!

• VR is also incredibly tricky

• “Bleeding-edge realtime 3D graphics” is the easy bit
• Lots of hard stuff here of course, but needs an entire lecture series



VR is awesome!

• VR is also incredibly tricky

• “Bleeding-edge realtime 3D graphics” is the easy bit
• Lots of hard stuff here of course, but needs an entire lecture series

• VR adds so many other areas
• Display and optics

• Hardware diversity

• Time and latency

• Bugs that take a long time to manifest

• Interactions with user physiology

3



VR overview

Hardware:

• Screen

• Lenses

• IMU (gyro + accelerometer)

• Camera & LEDs

(and lots of scary details!)

4



VR overview

Software:

• Tracking

• Prediction

• Rendering

• Timewarp

• Distortion & processing
(all timings are examples, not any specific device)



Software in detail

• Read 60Hz camera
• Find LED dots

• Find HMD pose from dot positions



Software in detail

• Read 60Hz camera
• Find LED dots

• Find HMD pose from dot positions

• Read 1000Hz IMU: gyro + accel

• Sensor fusion
• Last known-good camera pose

• Integrate IMU data forwards
• (this is the concept - in practice it’s a continuous filter)



Software in detail

• Read 60Hz camera
• Find LED dots

• Find HMD pose from dot positions

• Read 1000Hz IMU: gyro + accel

• Sensor fusion
• Last known-good camera pose

• Integrate IMU data forwards
• (this is the concept - in practice it’s a continuous filter)

• Predict motion forwards to next frame display time
• Will typically be ~20ms away

6

20ms



Software in detail

• App renders view from each eye
• Typically takes a frame, i.e. 10-15ms

20ms



Software in detail

• App renders view from each eye
• Typically takes a frame, i.e. 10-15ms

• Re-read latest IMU data and re-predict to next frame
• Prediction is now only ~5ms

• Timewarp

20ms

5ms



Software in detail

• App renders view from each eye
• Typically takes a frame, i.e. 10-15ms

• Re-read latest IMU data and re-predict to next frame
• Prediction is now only ~5ms

• Timewarp

• Image processing
• Distortion

• Chromatic aberration

• Compositing

• Gamma curve

• Overdrive
7

20ms

5ms



Doing the timewarp

• Reprojection of a rendered scene to a different orientation
• Rotational works well, positional less so

• Three separate effects in one mechanism



Doing the timewarp

• Reprojection of a rendered scene to a different orientation
• Rotational works well, positional less so

• Three separate effects in one mechanism

1. Late IMU read, re-predict, and fixup
• Smaller prediction time = much less error



Doing the timewarp

• Reprojection of a rendered scene to a different orientation
• Rotational works well, positional less so

• Three separate effects in one mechanism

1. Late IMU read, re-predict, and fixup
• Smaller prediction time = much less error

2. Rolling shutter compensation
• The display lights up a line at a time, not all at once



Doing the timewarp

• Reprojection of a rendered scene to a different orientation
• Rotational works well, positional less so

• Three separate effects in one mechanism

1. Late IMU read, re-predict, and fixup
• Smaller prediction time = much less error

2. Rolling shutter compensation
• The display lights up a line at a time, not all at once

3. Mitigation for stutters and stalls (“async timewarp”)
• Makes them less painful, but still look bad

• This does NOT mean you can render at 30fps!
9



Sounds simple, what could go wrong?

VR brings some specific problems to the picture

• Timing is critical
• VR relies on correct prediction

• Errors in timing are difficult to diagnose

• Hardware configuration & variability
• GPUs

• Power management

• USB devices

• Human variation

11



Timing, timing, timing

• Rendering uses a lot of predicted HMD poses
• Requires high-quality data to do good prediction

• Requires the actual display time to be within ~2ms of predicted

• Being an entire frame late or early (~12ms) is throw-against-wall bad



Timing, timing, timing

• Rendering uses a lot of predicted HMD poses
• Requires high-quality data to do good prediction

• Requires the actual display time to be within ~2ms of predicted

• Being an entire frame late or early (~12ms) is throw-against-wall bad

• Incorrect timing is very difficult to see
• Even experienced people can’t reliably see <10ms errors

• But they will make people nauseous after 15mins

• “Works on my machine” isn’t even reliable!

• Most automated testing only does functionality, not timing

12



Hardware configuration problems - GPUs

• VR requires a fixed, consistent framerate
• Apps do not have fixed frame content

• Timewarp can help mitigate the worst stutters



Hardware configuration problems - GPUs

• VR requires a fixed, consistent framerate
• Apps do not have fixed frame content

• Timewarp can help mitigate the worst stutters

• Massive range of performance in desktop PCs
• Multiple axes of perf: drawcalls vs compute vs bandwidth

• Any can be the limit for different parts of the scene



Hardware configuration problems - GPUs

• VR requires a fixed, consistent framerate
• Apps do not have fixed frame content

• Timewarp can help mitigate the worst stutters

• Massive range of performance in desktop PCs
• Multiple axes of perf: drawcalls vs compute vs bandwidth

• Any can be the limit for different parts of the scene

• GPU APIs & system optimized for throughput, not low latency
• Rendering pipeline has very low-quality timing feedback

• Use big hammers to solve – lots of stalls & syncs

• Wastes a lot of performance

17



Hardware configuration problems -
Clocks

• CPU and GPU will throttle/overclock according to thermals

• Precise CPU clock measures cycles – changes with frequency!
• Reliable “chipset” clock has coarse granularity

• We use one to sync the other - mostly works

• Finally fixed with Skylake CPUs – reliable AND precise
• But Skylake isn’t out yet…

• Especially difficult on mobile & laptops
• Very aggressive throttling

• Perf will change mid-frame

16



Hardware configuration problems - USB

• Data collected by CPU polling

• Hubs have unknown buffering granularity
• Every PC has multiple hubs in it, plus external ones

• Each adds unpredictable latency

• USB devices can block each other (async isn’t that async)

• HMD has a reliable clock, timestamps all events
• But we still have to sync up HMD and CPU clocks over USB

18



Bug-fighting tools

• Capture and reply of sensors

• Robots & mo-cap

• Motion-to-pixel tests

• Feedback from HMD



Capture and replay of sensor inputs

• Outputs compared with known-good results

• Good for sensor algorithm development
• Blob finding

• Pose estimation

• Fusion of IMU and vision

• Good for nightly tests
• Easy to accidentally add noise, off-by-one-sample errors during dev

• Good for performance tests
• Completely repeatable inputs

20



Robots & mo-cap

• Robot arm with HMD mounted on it
• Makes known & somewhat repeatable motions

• Tests hardware sensor error, noise, temperature, etc

• Cube/room of professional mo-cap cameras
• Captures actual human movement

• Data is not as clean as you’d like – lots of filtering needed

• Hard to run nightly or regression tests
• Slightly different every run

• Changing HMD or camera requires recalibration

• But we’re starting to try it

22



Motion-to-pixel tests

• Feed sensor-fusion outputs to rendering engine

• Optional deterministic time stream
• Replace real clock with recorded one

• Render & take screen captures



Motion-to-pixel tests

• Feed sensor-fusion outputs to rendering engine

• Optional deterministic time stream
• Replace real clock with recorded one

• Render & take screen captures

• Comparing images is surprisingly difficult
• “No change” optimisations can easily cause small pixel/colour changes

• But are they correct changes or bugs? Requires operator skill

• Differences between GPUs, even between driver versions

• Bug fixes & new features require humans to re-approve new images

• Still setting this system up – results TBD
24



Feedback from HMD

• HMD sends top-left pixel value back over USB, with timestamp
• Top-left pixel is beyond lens range, so we can use as a frame ID

• Dynamic end-to-end latency test of graphics system



Feedback from HMD

• HMD sends top-left pixel value back over USB, with timestamp
• Top-left pixel is beyond lens range, so we can use as a frame ID

• Dynamic end-to-end latency test of graphics system



Feedback from HMD

• HMD sends top-left pixel value back over USB, with timestamp
• Top-left pixel is beyond lens range, so we can use as a frame ID

• Dynamic end-to-end latency test of graphics system

• Used to fine-tune prediction algos

• Useful for helping a user set up a working system
• Run simple Oculus test app, are you getting correct latency?

• Spots dodgy drivers, broken cables, USB problems, etc



Feedback from HMD

• HMD sends top-left pixel value back over USB, with timestamp
• Top-left pixel is beyond lens range, so we can use as a frame ID

• Dynamic end-to-end latency test of graphics system

• Used to fine-tune prediction algos

• Useful for helping a user set up a working system
• Run simple Oculus test app, are you getting correct latency?

• Spots dodgy drivers, broken cables, USB problems, etc

• Not as useful to a running app
• What can an app do with “latency is too high” message?

• Dynamic scaling of rendering speed has difficult hysteresis & feedback
• Still a hard research problem

26



Bug-fighting methodologies

• Naming schemes

• Code standards

• Multiple pairs of eyes

• Unit tests / test-driven development

• Asserts

• Code reviews



Naming schemes

• Not that important, just pick one
• CamelCaps vs under_scores

• local/m_Member/g_Global

• szHungarian



Naming schemes

• Not that important, just pick one
• CamelCaps vs under_scores

• local/m_Member/g_Global

• szHungarian

• We chose:
• CamelCaps

• localVar/MemberVar/GlobalVar

• no



Naming schemes

• Not that important, just pick one
• CamelCaps vs under_scores

• local/m_Member/g_Global

• szHungarian

• Spaces and units – important!
• EyePos -> EyePosInHead

• Transform -> HeadFromWorld (see blog post for details)

• Delta -> VsyncDeltaMillisecs

• Brevity is not a virtue – take advantage of autocomplete!

• We chose:
• CamelCaps

• localVar/MemberVar/GlobalVar

• no

28



Code standards

• In the sense of “which features of C++ do we use?”

• Extremely effective



Code standards

• In the sense of “which features of C++ do we use?”

• Extremely effective… at causing arguments
• Functional purists

• Template metacoders

• Inheritance-tree huggers

• Abstractionistas

• C99ers



Code standards

• In the sense of “which features of C++ do we use?”

• Extremely effective… at causing arguments
• Functional purists

• Template metacoders

• Inheritance-tree huggers

• Abstractionistas

• C99ers

• Conclusions fuzzy, but point towards using fewer language 
features

• Sometimes called “C+” (many variants)

• Fewer surprises, more typing

• But coders are really good at typing
30



Multiple pairs of eyes

• Bugs can be invisible to some, really obvious to others
• Always get others to check your visuals

• Learn what you can and can’t see



Multiple pairs of eyes

• Bugs can be invisible to some, really obvious to others
• Always get others to check your visuals

• Learn what you can and can’t see

• Ten people can’t see a problem and one person can – it’s a 
problem

• There is no “authority” in these cases

• Deal with it the same way as colour-blindness (5%-10% of the pop)

• Designated guinea-pigs for each artifact



Multiple pairs of eyes

• Bugs can be invisible to some, really obvious to others
• Always get others to check your visuals

• Learn what you can and can’t see

• Ten people can’t see a problem and one person can – it’s a 
problem

• There is no “authority” in these cases

• Deal with it the same way as colour-blindness (5%-10% of the pop)

• Designated guinea-pigs for each artifact

• But sometimes you have to pick your battles
• 60Hz/75Hz/90Hz low-persistence

• Fast-moving FPS games

• Screen door effect vs blur
32



Unit tests / test-driven development



Unit tests / test-driven development

Analysing…



Unit tests / test-driven development

Analysing…

26/26 tests PASSED



Unit tests / test-driven development

• Very little help in subjective algorithm development
• Only work for refactoring and optimization

• We just don’t do that very much! VR does not have “big data”

• Not much use for GPUs

• Actively impede algorithm development



Unit tests / test-driven development

• Very little help in subjective algorithm development
• Only work for refactoring and optimization

• We just don’t do that very much! VR does not have “big data”

• Not much use for GPUs

• Actively impede algorithm development

• I don’t like the bang for the buck
• Very few interesting bugs would have been caught with them

• Trivial ones easily caught by other methods

• Not worth the effort, complexity and maintenance

34



Asserts

• I love asserts
• Personal codebase – 20% LOC are asserts!

• Double as documentation
• Cannot go out of date like comments and docs

• Especially on function arguments/inputs – ranges, allowed combos, etc

• Can be used for mini unit tests



Asserts

• I love asserts
• Personal codebase – 20% LOC are asserts!

• Double as documentation
• Cannot go out of date like comments and docs

• Especially on function arguments/inputs – ranges, allowed combos, etc

• Can be used for mini unit tests

• Almost nobody dislikes asserts
• Makes them almost unique amongst language features!

• Though many aren’t very aggressive about using them

• Lots of nasty bug-hunts could have been caught early by 
asserts 36



Code reviews

• Cardboard-cutout-dog effect
• Just explaining it to someone else causes self-analysis

• Increases “bus factor”
• Ownership = responsibility, not control. Tell people how your code works!

• However, can be a time sink
• Leads to yes-men review-buddies

• Making it online, not in-person can help (but reduces CCD effect)

• Hard-and-fast rules create cheats – make it recommended not mandatory

• Various cultures within Facebook & Oculus
• Different groups have different code review cultures

38



Bug-fighting methodologies – score sheet

• Naming schemes

• Code standards

• Unit tests / TDD

• Asserts

• Code reviews

• Pick one, almost any one

• Keep it simple

• Nope

• Yes yes yes

• Maybe, but don’t go nuts

39



…and that’s just the SDK!

• Developing an app that uses VR has a bunch of other fun

• All the usual complexity of realtime 3D rendering

• Big performance requirements
• Mono@60o@30fps -> Stereo@100o@75fps (and that was last year)

• Input restrictions (can’t see a keyboard) 

• Design restrictions
• Can’t force camera angles – must follow the user’s head

• Cinematic language reduced – framing, composition, angles, cuts

• For more, see my GDC2014 talk

41



VR is mean to brains

• World scale is due to multiple cues
• Pupil separation and head motion must match physical user

• Or be a consistent scaling

• Height of virtual camera from ground
• Physical dimensions of in-game avatar
• Vergence vs focus conflict
• Floor-dragging effect – your feet overrule your eyes

• Vestibular/optical mismatch – motion sickness
• Ears say you’re sitting still, eyes say you’re moving
• HW & SW working perfectly, but induces 

rollercoaster/travel/seasickness

43



VR is mean to coders

• Multiple bugs can look identical, e.g. “judder” can be:
• Framerate dropping below HMD rate

• Incorrect latency prediction

• Incorrect physics simulation time

• Misbehaving USB hubs

• GPU buffering/syncing (especially with multi-GPU)

• Misc other rendering bugs

• Errors frequently “invisible”, but still cause nausea
• Extra frame of latency

• Off-by-one-pixel rendering

• Position tracking not working

• Swapped eyes (yes, really)

45



VR is really mean to graphics

• Much of our graphics intuition becomes useless
• Algorithms can be doing exactly what we want, yet feel terrible

• Normalmaps look rubbish with stereo & head motion
• Looks like “hologram foil”
• Need high-quality, physically consistent disp.maps

• Billboards and impostors have to be ~10x as far away
• Grass, leaves, mist, effects

• Most specular methods don’t stereo-fuse properly
• …and specular that does fuse shows up surface triangle structure 

• 2D screenspace labels don’t work – need in-world 3D ones

47



Conclusion

• VR is all the hard things rolled into one
• Display and optics

• Wide range of hardware

• Time and latency

• Bugs that take a long time to manifest

• Interactions with user physiology



Conclusion

• VR is all the hard things rolled into one
• Display and optics

• Wide range of hardware

• Time and latency

• Bugs that take a long time to manifest

• Interactions with user physiology

• But when it works it’s awesome
• Dumpy: Going Elephants

• Showdown demo by Epic

• Elite:Dangerous with a DK2 and HOTAS

49



Questions?

developer.oculus.com

tom.forsyth@oculus.com

Further reading

Oculus dev area: Best Practices Guide
GDC / Connect 2014: Developing VR Experiences with the Oculus 
Rift

Personal blog: eelpi.gotdns.org/blog.wiki.html
Relevant entries: Matrix maths and names

Logging, asserts and unit tests


