
I don’t have traditional “speaker notes” because I tend to use the slides as my notes
and then speak off-the-cuff. This session was videoed, and that will be up on the
web. So I’m going to use these speaker notes to add further background or details
that time didn’t allow, or that only a few will care about.

People ask about my background:
- Graphics coder most of my life
- Shipped three games at Muckyfoot Productions: Urban Chaos, Startopia, Blade 2
- Joined RAD Game Tools, worked on Granny3D animation middleware
- There I met Michael Abrash, and joined him on the Larrabee project for Intel
- Ended up designing much of the instruction set, and joined Intel to continue as

Larrabee turned into Knights/XeonPhi
- Abrash seduced me back to games, joining his VR group at Valve
- With Joe Ludwig, converted Team Fortress 2 and Half Life 2 to VR
- Moved to Oculus to work on the rendering and SDK

This talk is things that we have learned from shipping games, both ones I’ve done
(TF2/HL2) and ones that our dev partners have done, such as EVE Valkyrie and

1

Hawken, and major kudos to our psychology department (yes, we have one!) for
adding a lot more rigor to our hacky experiments.

1

2

The picture here is of Crystal Cove, which is why the LEDs are visible. Note the LEDs
on the top, side and bottom, which give us tracking over very wide angles. DK2 has
almost the same pattern of LEDs, but they’re covered by an IR-translucent shell, so
they’re not visible in visible light. The DK2 camera has a much better stand as well –
it takes up less desk space, and can fold out to clip to the top of a monitor.

One thing people misunderstand about the camera is that it is NOT the primary
tracking system. It’s too slow (yes, 60Hz is slow in this context!) and relatively high-
latency (20-30ms depending on USB bandwidth and CPU speed) to be used directly
for tracking and prediction. The gyro and accelerometer are the main high-speed
low-latency tracking inputs. The problem (as has been well-documented) is that
they’re unstable – because you have to integrate their data to produce absolute
position and orientation, they can quickly drift into uselessness. In the case of the
accelerometer, it’s really only stable for about a second before it heads off towards
Jupiter. What the camera does is constantly provide a “reality check” that sensor
fusion uses to stop this drift. It doesn’t matter that the camera data comes in late –
we can retrospectively apply this correction to make sure we always have very stable
low-latency data.

3

Fortunately, the SDK deals with all this for you and you really don’t need to care
about it.

3

I’m not going to talk about all the low-level details of the Rift, because the SDK
should do most of that stuff for you, or at least hold your hand through the process
(e.g. distortion) enough that it’s not something that you need to worry about. If it
doesn’t, then the SDK isn’t doing its job, I’ve screwed up, and it needs fixing – send
me email and we’ll get on it.

What I am going to talk about is the decisions that a game developer does need to
think about, because they are either difficult tradeoffs, unsolved problems, or where
the solution is very dependent on the style or content of the game. I will also
highlight a few more straightforward things that we’ve seen multiple people get
wrong, just to focus peoples attention on getting it right.

4

In fact as soon as we get rid of all the bugs, we ship it!

Our brains actually have multiple perceptual “modes” – similar to the way someone
who wears glasses will get used to how the world looks with them on, and with
them off, and can switch between those modes very quickly when they put on or
take off their glasses. Developers spend enough time in (buggy) VR that we tend to
develop these two modes of perception.

5

We think there’s the VR equivalent of the “uncanny valley” – and it’s certainly a
useful metaphor.

If you display something that is blatantly wrong, the brain will quickly spot that and
ignore it, and you won’t cause people problems. On the other hand, it’s not much
fun, and you lose presence.

But if you display something close enough to correct, the brain will really try to
interpret it as correct. And the closer to correct it is, the more the brain will try to do
this, and the less conscious you will be of those errors. But those errors will still be
there, and they’ll cause confusion, especially if they disagree with the proprioceptive
and vestibular senses. So you really need to get things bang on, not just close.

6

Here I’m not talking about errors, just about the experience. Assume a completely
“perfect” VR experience – no bugs, no sensory conflicts – you’re really THERE. But
now imagine being in this thoroughly realistic world, but with existing standard
gameplay, where you’re shooting someone in the face every few seconds, double-
jumping through the air at 30mph – it’s way too intense!

Team Fortress 2 is a good example. On a technical level, it’s a pretty decent port to
VR (modesty is not my strong point). And although it’s non-stop-face-shooting
action, when playing on a monitor I can “zen out” and play it for hours, even while
thinking about other things. But in VR it’s so “invasive”, that I can’t easily do that – I
can play it for about half an hour, and then even with the cartoony graphics and
comedy hats, I need a break to let my heart rate return to normal.

It is very difficult for people in VR to detach themselves from the game world. In
some ways it’s like trying to sleep in a cinema – your only sensory inputs are from
the film. Indeed that’s why we go to the cinema. So we need to deliberately give
people space to relax. Pacing is important in games on all media, but that’s even
more true in VR.

7

This is one of the hardest things to learn about VR. You are the worst subject, and
you are absolutely not representative of your audience.

8

The stairs example was a revelation. In the VR group at Valve, we had a wide range
of VR motion-tolerance (and I am one of the more sensitive), but for whatever
reason none of us working in VR had problems with stairs. We didn’t even know it
was a “thing” we needed to be careful of.

Once we started wider internal testing of TF2 on the Rift with other Valve devs, we
found some people had trouble with one particular aspect of TF2 – going up and
down stairs. People who otherwise had no problems running and jumping around
the map at speeds that made me feel ill, would have real senses of vertigo when
walking up or down stairs or steep slopes.

Even stranger, some people had no problem going down stairs, but going up
unnerved them – it was something to do with the visual effect of the stairs scrolling
in front of their eyes, because it wore off as they reached the top of the stairs and
could see the next floor. And a few weeks ago I finally met the rarest example –
someone who was fine going up stairs, but going down was a big problem.

In short, our lovely precision-built hardware and software is being completely ruined

9

by the unpredictable squishy bag of meat that the HMD is mounted to.

9

This negative feedback is somewhat like “aversion therapy” - except it actually
works. Having discussed simulator sickness far too much over the past two years, I
now actually GET nausea just by using the WORD nausea. So I’ll stop typing “nausea”
and go to the next slide.

10

11

If the player is thinking “oh wow I’m in VR”, that’s not presence! We’re trying to
make them FORGET they’re in VR. In fact, we’re trying to make it require a conscious
effort to remember that they’re not actually in the world. We’re not there quite yet,
but getting closer. You want them to be focusing on the experience your designers
have spent so long crafting, not just looking around saying “it’s soooo 3D”.

12

13

Our lovely hardcore VR fans enjoy hunting down graphics settings to make things
more immersive, even if it then makes them ill. That’s fine because they understand
it’s their choice, and they keep their GinGins handy.

But please don’t force this on people who haven’t been in VR much.

14

15

Voice: “this is a simple diagram I found on Wikipedia. I think it’s pretty obvious
what’s going on here, it really doesn’t need much explanation.”

16

I’m such a troll.

17

This is a horizontal slice through the head at ear/eye level. For simplicity it only
shows the components relating to horizontal rotation of the head. There are similar
systems for vertical rotation, and also rolling of the head.

18

19

20

Fixation is any case where your eyes are looking at a fixed object but the head is
moving. Because we’re humans balancing our heads on a tall, unstable bipedal
platform, this happens almost all the time, so this system needs to be really good, or
we wouldn’t be able to see anything clearly. It’s so good you can read a stationary
book while aggressively turning your head in all sorts of directions.

This is a very fundamental reflex. You cannot turn it off, and it happens even in the
dark or when your eyes are closed – if you rotate your head, your eyes WILL counter-
rotate.

Interestingly, not only is this not motion not saccadic, the VOR reflex actually causes
saccades. If you try to follow a moving object with your head, or sweep your eyes
smoothly around a room, the VOR reflex is constantly trying to keep your eyes
pointed at a fixed point in space. So to keep following the moving object, or scanning
the room, your eyes have to jump “past” the VOR reflex to catch up – saccades! If
the object moves slower than 30 degrees/second, we can do non-saccadic smooth
pursuit – but that’s a really slow speed!

21

This is a simplification – the gain is not quite as hardwired as shown here. For
example, people who wear glasses will usually have two settings of VOR gain – one
with glasses and one without – and they can switch between them very quickly.
However, both those modes take long-term training, and when they get a new set of
glasses with a slightly different VOR gain, it takes 1-2 weeks to retrain one of those
“slots”.

In fact this is one of the dangers of developing in VR. If you get the settings wrong
and don’t correct them, in a few weeks you can retrain one of the “slots” of your
VOR gain to cope with the error. And then you simply WON’T see the error any
more. In fact if you correct the error, now it will look wrong! This is why we as
developers need to be very aware that “looks fine to me” is not only not useful, it’s
often actively misleading data.

22

Image off Wikipedia again – thanks! A halving in size means these are really strong
glasses, and you can see the chromatic aberration at the right hand edge.

23

Abbreviated for time. There are lots of other training feedback mechanisms for VOR
gain that don’t require fixation. But the principle still stands – the brain is expecting a
certain amount of retinal flow for any given head/eye motion, and the image on the
HMD needs to match that to within a few percent to avoid simulator sickness and
other problems.

24

Michael Abrash is an example of someone sensitive to this problem even on a
monitor. He has spoken on his blog about how developing Quake was a problem
because it made him queasy if he played for too long. He was an incredibly useful
guinea-pig in the Valve VR group – if Michael could play your game for more than a
few minutes, you knew you were doing something right!

Another interesting side-effect I have noticed is that some people playing games on
a monitor naturally move their heads into a spot so that the view looks right. I find
myself leaning closer to the monitor with some FPSes than others, and I realized that
this correlated with their FOV – the wider the FOV, the closer I’d move. I went
around the office watching people playing TF2 fullscreen during a playtest, then
measured where their eyes were relative to the size of the screen, and what their
FOV settings were (default is 75 degrees, but it can be changed), and sure enough a
significant proportion of them placed their eyes pretty much exactly at the realistic
spot so that the monitor filled 75 degrees of their vision, even it that meant they
hunched uncomfortably close to the screen – far closer than when they were just
coding/designing/etc.

25

26

In summary, trust the SDK. We give you these values for a very good reason – don’t
play with them! This isn’t actually at all difficult to get right, it’s just that on monitors
we’ve become so accustomed to being able to manipulate these values freely.

To say it again – as developers, we get used to all sorts of crazy stuff, and changing
the FOV might not seem that bad to us. But I guarantee you, you’re making life
unpleasant for a significant chunk of your audience. Worse still – they won’t know
why. Even when you know what you’re looking for, diagnosing incorrect FOV scale is
amazingly difficult.

27

Here is your typical VR user. Those of you under 25 may need to ask your parents
who this chap is.

(it always makes me happy when my audience laughs at my terrible jokes. I know it’s
a tech-heavy GDC talk, but that doesn’t mean it has to be boring!)

28

This is what we used to think – that all you needed was IPD and you’re good to go.

29

Nose-to-eye and eye relief determine the translation of the virtual cameras for
rendering. They also determine the edges of the FOV (e.g. a larger eye relief means a
narrower FOV, because of the edge of the lenses), and the particular shape of the
distortion function. Yup – we change the distortion function per-user, and in fact we
do it per-eye as well. The SDK will take care of this for you, but just be aware that
these values do all matter.

30

The audio question is a bit larger than I had time for in the talk, but three reasonable
places to put the audio listener are:

1. Between the eyes.
2. Between the ears, i.e. 3-4 inches further back.
3. One listener per ear, i.e. 3-4 inches back, 4-6 inches outwards. Not many audio

libraries support this option though.

It is a good idea to have options for both speakers and headphones in your game.
The crucial difference in VR is that headphones move with the head, while speakers
do not. So if the player rotates their head left, the environmental sounds that
speakers emit should not change, but with headphones the sounds should all rotate
right. Treat audio listener position and orientation with just as much care as you do
the cameras for rendering – mismatches can quickly ruin the effect of presence.

31

The user’s “center” position will change slightly every time they sit down (e.g. on a
couch), and so will their “zero yaw” direction (e.g. on a swivel chair), so it’s good to
have a way to reset it in-game without having to exit to the desktop, run a separate
app, etc. For the same reason, you want this option on the pause menu, not just at
start of day. Also, DK1 doesn’t have a camera, and some locations don’t have enough
field for the magnetometer to work, so they can still drift and need resetting.

32

Note that even without a camera, e.g. the user has DK1, or using DK2 without a
camera, the SDK has a kinetic “head model” that does a reasonable guess at the
position of the head as long as the user doesn’t move their shoulders. The API is
identical whichever mode is being used, and unless you explicitly query for it, you
don’t really know or care which mode is in use at any one time.

33

34

35

None of this is difficult, and the SDK feeds you all these numbers. This is just me
banging on about how important it is to do the right thing and not cut corners or use
fudge factors.

36

37

“Three” = world-origin-to-center; center-to-left-eye; center-to-right-eye.

38

Here the motion of the player’s head has not been scaled, but their center-to-eye
vectors have been. This will cause simulator sickness – in fact we believe it’s one of
the leading causes.

It is very easy to forget to scale all three, or to have the center-to-eye vectors not
match the players actual distances. It is also extremely difficult to diagnose – our
conscious brains are incredibly bad at spotting that the center-to-eye vectors are
wrong, even by multiple centimeters. But our lizard-brains are still sensitive, and
errors of as little as 5% can make people ill. And they won’t know why! VR is
annoying that way.

39

“Convergence gets tricky” – what I mean is this: A normal distance to talk to
someone is around 3 feet away. If you shrink the world by a factor of 12x, it’s really
amusing, because everyone looks like Barbie and Ken. The problem is they now
stand 3 inches away to talk to you – this is almost impossible to point your eyes at!
But moderate scales like 2x or 3x are usually fine, and reduce intensity significantly
for people who are sensitive.

40

This is an example of where older research can be misleading. We’re not sure why
they recommended monocular mode, but we believe it’s because their HW was
what we’d call “terrible” by today’s standards – latencies of 100s of milliseconds,
limited FOV and calibration, etc. Not their fault – it was the 80s, and the tech just
wasn’t ready. But still bad. In that scenario, it may be that monocular made it slightly
less bad.

What we do know is that with modern tech, good calibration, and latencies below
40ms, monocular never seems to help, and in some people (e.g. myself) it is
significantly worse than proper stereo. However, this does still need more thorough
research, and it may turn out that different people simply prefer different things.
We’ll keep the Best Practices Guide up to date on our findings.

41

Again, our younger viewers may need to ask their parents who Geordi La Forge is. He
is shown here wearing the Oculus Rift Mk1701

Geordie is 5’7”, so I estimated his eye height at 5’3”. The SDK will do this for your
players as well. Fortunately (as you will see), it doesn’t need to be all that precise.

42

43

I chose Geordi because of the VISOR of course, but it turns out he is one of the
shorter members of the crew. The tallest? Well, if you ignore Worf’s forehead (which
makes his head taller, but doesn’t affect his eye height), it’s Riker…

44

…and the camera never lies - Riker really is over nine feet tall.

(Thankyou Google Image – so perfect, I just couldn’t resist using it)

45

46

47

It seems to be totally fine to just move the eye height up, but leave the world scale
as it is.

This is fortunate because changing the eye height of a specific character in a game
(James Bond, Gordon Freeman, etc) can cause all sorts of pain for level designers.

48

…except for the problem of Floor-Dragging. I’m not sure if this has a formal name,
but “floor-dragging” is what I call it.

49

(finding pictures of Geordi sitting down where you can see his feet is very difficult –
in this one he’s actually being tortured by Romulans)

The exact eye-height of the player when sitting down will of course depend on the
chair, but a normal office chair puts eyes at around 4 feet off the floor.

50

This effect took a while to find. We couldn’t figure out why we felt so short. I spent a
week looking for math errors. Then someone said “oh, you fixed it!” – err… no I
didn’t. Then they realized they were standing up. Sit down, effect comes back, stand
up, it goes away. Yet again, the weakest link in our perfect VR simulation is the
wetware!

51

The good news is this effect does not seem to cause any disorientation or sickness,
and this is one reason we think it is a higher-level effect.

52

53

Lucas Pope is going to hate me…

54

55

56

The whole point of a bar stool is that people sitting on them are at eye-level, and can
talk, with people standing up. So your eyes are at the same height as when you’re
standing, and the world is perceived as being at the correct scale.

57

After my talk, I had a chat with Brad Herman from Dreamworks, and he mentioned
they have chairs that are just high enough off the ground so that peoples’ feet don’t
touch. And this works, even though they aren’t as tall as bar stools. So my idea was
somewhat flippant, but it turns out that any method of removing the pressure on
the feet does indeed work – you don’t actually need the eye height to match
standing. He also described a sort of “saddle chair” with stirrups to do the same
thing and stop the feet touching the floor. Thanks Brad!

58

This is the zeroth rule of VR.

59

The knockdown itself is usually fast enough not to cause simulator sickness – it’s
nearly a teleport. But getting up afterwards is five seconds of agony.

Even though picking an object off the floor causes no overall translation, think about
the head motion involved!

60

61

Brad Herman from Dreamworks suggested using a “blink” animation rather than a
simple fade-to-black. He says even really slow blinks seem “natural” to people.

Remember to keep head-tracking – during the fade or the blink, make sure if the
player moves their head, the view will still move.

62

The ghost option can be tough to retrofit nicely to an engine.

None of these solutions are great. Hopefully people will experiment with others and
find out what works. More importantly, tell each other what DOESN’T work – saves
everyone a lot of time (and since you’re not going to use it, because it doesn’t work,
it’s not any sort of trade secret)

63

Team Fortress 2 is not a good game to port to VR in many ways – things move too
fast, and it’s much too intense. But the avatars and the animations and the ways you
can customize them are fantastic for immersion. When rendering on a monitor,
there are a bunch of custom-made 1st-person avatar models, but they are usually
just a pair of arms, and they’re rendered with an odd FOV. In the VR version, we
stopped using those (because we needed you to have an entire body) and used the
existing 3rd-person models.

64

Again, first constraint is VR Rule Zero.

65

Especially animations like the Soldier’s rocket-launcher reload anim – his head
moves around a LOT.

66

Antici…

67

EW!

68

“Meathook Avatar” is the name of my death-metal band.

(this is an animated GIF and the cat is “dancing” – it’s an old internet meme I’m sure
you’ve seen before)

69

70

71

The War-Themed Hat Simulator team at Valve were devastated to discover we also
had to turn off hats. The problem is that “hat” in TF2 includes things like glasses,
masks & beards that don’t render correctly when the camera is in inside them.

72

73

74

This picture is also animated – the position where the head would be is now fixed in
a single place (i.e. where the player’s VR head is), while the body trashes around
underneath it. This is where the “meathook” name comes from.

Obviously only do this for the 1st-person view of the current player. Don’t do it for all
the other characters in the game! Also, don’t do it for the player’s shadow, or any
reflections. Yes, this means your feet and your shadow’s feet don’t quite match up –
but you really don’t notice that much. Ditto foot-slip – you really don’t notice that
they’re sliding across the floor, because you have to look a long way down to even
see them.

If you have a full-body IK system in your engine, you could possibly do this in a more
elegant way – constrain feet and maybe hands to the animated positions, while
moving the neck to the HMD-determined position, and let the waist sort itself out.
But watch out for hand/face interactions e.g. the player holds a weapon up to their
face, answers a telephone, lights a cigarette, etc. Now you need to start marking up
animations to decide how the hands should IK – it can suddenly be a big increase in
workload. Whereas this simple hack works fine – we didn’t need to modify any of

75

the TF2 animations or meshes.

75

Exaggerating for brevity – presence does actually have shades of grey, but they’re
along other dimensions. In terms of framerate, there does seem to be a critical
framerate at about 50fps, though for fast-moving scenes it can be higher. Note this is
a different value from that required for “flicker fusion” which is significantly higher
(varies widely, but around 90Hz seems to cover 90% of the population) – that’s
something the HW designers need to worry about.

76

It looks like some of the upcoming DX12 and Mantle features should help reduce the
cost of rendering objects multiple times, as well as reducing overall draw call costs.

77

The SDK has functions to help you decide the optimal-quality size of the eye-render
targets, but of course it has no idea how fast or slow your engine is. If you have to
choose between quality and sustained performance, performance should win every
time. Maintaining framerate is so much more important than extra pixel detail.

78

79

80

